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Inventories and the short-run dynamics of
commodity prices

Robert S. Pindyck*

Competitive producers hold inventories to reduce costs of adjusting production and to
reduce marketing costs by facilitating scheduling and avoiding stockowts. Using data for
copper, heating oil, and lumber, I estimate these costs within a structural model of pro-
duction, sales, and storage, and I study their implications for inventory and price behav-
ior. Unlike earlier studies, this work focuses on homogeneous and fungible commoditiés. y
This avoids aggregation problems, and it allows the use of direct measures of units pro-
duced, rather than inferences from dollar sales. Also, I estimate Euler equations and allow
the marginal value of storage to be a convex function of the stock. This fits the data better,
and helps explain the role of storage. Finally, I use futures prices to directly measure the
marginal value of storage. I find a production-smoothing role for inventories only for
heating oil, and during periods of low or normal prices. A more important role is to reduce
marketing cosis.

1. Introduction

®  The markets for many commodities are characterized by periods of sharp changes in
prices and inventory levels. This article examines the role of inventories in the short-run
dynamics of production and price, and it seeks to determine whether fluctuations in spot,’
.and futures prices can be explained in terms of ngldmes in production and/or inventory
demand.

In a competitive commodity market, producers hold inventories to reduce costs of
adjusting production, but also to reduce marketing costs by facilitating production and
delivery scheduling and avoiding stockouts. These latter factors make it costly for firms
to reduce inventory holdings beyond some minimal level, even if marginal production cost
is constant and adjustment costs are negligible. In general, the extent to which price fluc-
tuates in the short run depends on costs of changing production as well as costs of drawing
down inventories.

* Massachusetts Institute of Technology.

This research was supported by MIT’s Center for Energy Policy Research, and by the National Sci-
ence Foundation under grant no. SES-8618502. 1 am grateful to Columbia University’s Center for the Study
of Futures Markets and the Commodity Research Corporation in Princeton, New Jersey, for providing fu-
tures market data. My thanks to Patricia Craig, John Simpson, and Yunyong Thaicharoen for their research
assistance, and to Ben Bernanke, Michael Brennan, Zvi Eckstein, Mantin Eichenbaum, Jeffrey Miron, Ariel
Pakes, Julio Rotemberg, Menachem Sternberg, Lester Telser, seminar participants at MIT, Yale, Tel-Aviv
University, and the NBER, and two anonymous referees for helpful comments and suggestions.

Copyright© 1994, RAND 141




142/ THE RAND JOURNAL OF ECONOMICS

To determine these costs, I estimate a structural model of production, sales, and stor-
age for three commodities: copper, heating oil, and lumber. I then examine the implica-
tions of these costs for inventory behavior and for the behavior of spot and futures prices.

Because of its importance in the business cycle, inventory behavior in manufacturing
industries has been studied extensively. Recent work has provided little support for the
production-smoothing model of inventories; in fact, the variance of production generally
exceeds the variance of sales in manufacturing.' There is more support for models of
production-cost smoothing, in which inventories are used to shift production to periods of
lower costs, and models in which inventories are used to avoid stockouts and reduce sched-
uling and other marketing costs.’

The data suggest that inventories play several roles in commodity markets. For two
of the three commodities studied here, the variance of production is much less than the
variance of sales, consistent with production smoothing. But the empirical results in this
article show that for all three commodities, the cost of drawing down inventories rises
rapidly as inventory levels fall, suggesting that inventories are needed to limit marketing
costs. This would limit their use for production or production-cost smoothing, particularly
during periods of high prices following shocks.

Besides their focus on manufactured goods, most earlier studies rely on a linear-
quadratic model to obtain an analytical solution to the firm’s optimization problem. Ex-
amples include Eichenbaum’s (1984, 1989) studies of finished goods inventories, the stud-
ies of the automobile industry by Blanchard (1983) and Blanchard and Melino (1986),
and Eckstein and Eichenbaum’s (1985) study of crude oil inventories. All of these models
include a target level of inventory (proportional to current or anticipated next-period sales)
and a quadratic cost of deviating from that level.

Although convenient, the linear-quadratic specification is a major limitation of these
models. First, marginal production cost might not be linear. But more important, a qua-
dratic cost of deviating from a target inventory level implies that the cost of a marginal
reduction in inventory is linear in the stock of inventory. Besides allowing negative in-
ventories, this is a bad approximation. Early studies have demonstrated, and the data here
confirm, that for commodities the marginal cost of drawing down inventories is highly
convex in the stock of inventory, rising rapidly as the stock approaches zero and remaining
close 1o zero over a wide range of moderate to high stocks.” There is no reason to expect
a linear approximation to be any better for manufactured goods.

The alternative approach is to abandon the linear-quadratic framework, adopt a more
general specification, and estimate the Euler equations that follow from intertemporal op-
timization. This was done in recent studies of manufacturing inventories by Miron and
Zeldes (1988), who show that the data strongly reject a general model of production

smoothing that accounts for unobservable cost shocks and seasonal fluctuations in sales,
and by Ramey (1991), who uses a cubic cost function to show that declining marginal

cost may help explain the excess volatility of production. However, in both of these studies

' See, e.g.. Blanchard (1983), Blinder (1986), and West {1986). But Fair (1989) shows that the use of
disaggregated (three- and four-digit $1C) data, for which units sold is measured directly rather than inferred
from dollar sales, supports the production-smoothing model.

? See Blanchard (1983), Miron and Zeldes (1988), and Eichenbaum (1989). All of their models in-
clude a cost of deviating from a target inventory level, where the target is proportional to sales. As Kahn
(1987) has shown, this is consistent with the use of inventories to avoid stockouts. One of the eurliest in-
ventory studies is Holt et al., (1960), who estimate costs of inventory holdings and back orders using fac-
tory-level data. For a survey of recent research on inventories, see Blinder and Maccini (1991).

b Early studies include Brennan (1958) and Telser (1958), McCallum (1974) estimates a model of
competitive price dynamics for the lumber industry, but he also restricts the marginal cost of drawing down
inventory to be linear in the stock of inventory. Nonetheless, he shows that this cost plays an important role
in price adjustment.
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the cost of deviating from the target inventory level is quadratic, so that the marginal cost
of drawing down inventories is linear.

This study differs from earlier ones in three major respects. First, 1 focus on ho-
mogencous and highly fungible commaodities. This helps avoid aggregation problems, and
it allows me to use direct measures of units produced, rather than inferences from dollar
sales and inventories.* Second, as in Miron and Zeldes and Ramey, I estimate Euler equa-
tions but allow the marginal cost of drawing down inventory to be a convex function of
the stock. This fits the data better, and it helps explain the value of storage and its role
in the dynamics of price. Third, I use futures market data to directly measure the marginal
value of storage, and thereby determine its dependence on the stock of inventory.’

The next section discusses the value of storage, presents basic data, and explores the
behavior of price, production, and inventories. Section 3 lays out the model, and Section
4 discusses the data and estimation method. Estimation results are presented in Section 5,
and Section 6 concludes.

2. Spot prices, futures prices, and the value of storage

® [t is useful to separate a firm’s costs of doing business into two components. The first
is the direct cost of production, which depends on the prices and quantities of factor inputs.
The marginal cost of production might or might not be rising, and there may also be costs
of adjusting production. The second component of cost relates to the marketing of the
firm’s output, and it includes costs of scheduling production and deliveries and avoiding
stockouts.

Both components of cost can create a value to holding inventory. If marginal inven-
tory is sharply rising in the short run and/or there are substantial costs of adjusting pro-
duction, inventories can be used to smooth production when demand is fluctuating, and
thereby reduce cost. But even if marginal production cost is constant and there are no
adjustment costs, inventories are needed as a lubricant to facilitate scheduling and thereby
reduce marketing costs. The marginal value of storage is the savings in marketing costs
resuiting from one additional unit of inventory. This marginal value is likely to be small
when the total stock of inventory is large, but it can rise sharply when the stock becomes
very small.®

Letting N, denote the end-of-period inventory level, P, the price, and E,Q,,, the ex-
pected next-period sales, we can represent the total per-period marketing cost by a function
BN, EQ,.., P}, with &, < 0, Oy > 0, DO, 0, P) = =, ® — 0 for N large, and
Py, Pp = 0. Hence the benefit (in terms of reduced marketing costs) of an extra unit of
inventory is —®y. This is commonly referred to as the marginal convenience yield from
storage.

I will assume that there is a (constant) cost of physical storage of a dollars per
unit per period. Thus total per-period marketing and storage costs are given by
O, EQ,.\, P) + aN,, and the net benefit of an extra unit of inventory is —®, — a. We

* Studies of manufactured inventories generally use Department of Commerce data in which produc-
tion is computed from dollar sales, a deflator, and inventories. Fair (1989) shows that the resulting mea-
surement errors add spurious volatility to the production series.

* Two other related studies should be mentioned. Bresnahan and Suslow (1985) show that with stock-
outs, price can take a perfectly anticipated fall, i.e., the spot price can exceed the futures price. Hence cap-
ital gains are limited (by arbitrage through inventory holdings), but capital losses are unlimited. However,
they ignore the nonspeculative value of inventory. Also, Thurman (1988) estimates a log-linear rational ex-
pectations model of inventory holding for copper in which production follows an AR(l) process and the
marginal value of storage is a convex function of the stock of inventory.

® This is supported by earlier studies (see footote 3), and by the results of this article. As for manu-
factured goods, Ramey (1989) models inventories as an essential factor of production, and her results imply
that production cost can rise sharply as inventories fali, which is consistent with my findings.
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will let ¢ = —®, — a denote this net benefit, i.e., ¢ is the net marginal convenience
yield.”

For commodities with actively traded futures contracts, we can use futures prices to
measure the net marginal convenience yield. Let ¢, be the (capitalized) flow of expected
marginal convenience yield net of storage costs over the period ¢ to ¢t + T, valued at time
t + T, per unit of commodity. Then, to avoid arbitrage opportunities, i,  must satisfy

$r =+ P, ~ fr,, (1)

where P, is the spot price, fr, is the forward price for delivery at ¢t + T, and r; is the risk-
free T-period interest rate. To see why (1) must hold, note that the (stochastic) return
from holding a unit of the commodity fromrto ¢ + T is J;,T + {(P..r — P). If one also
shorts a forward contract at time #, one receives a total return by the end of the period of
d,r + fr. — P,. No outlay is required for the forward contract and this total return is
nonstochastic, so it must equal rP,, from which (1) follows.

In keeping with the literature on inventories (see the references in footnotes 1 and
2), T work with the net marginal convenience yield valued at time t. Denote this by
@, = ,4/(1 + ry), so that (1) becomes®

(I +rpg =01 + P — fr.. (1a)

For most commodities, futures contracts are much more actively traded than forward
contracts, and good futures price data are more readily available. A futures contract differs
from a forward contract only in that it is “marked to market,” i.e., there is a settlement
and corresponding transfer of funds at the end of each trading day. As a result, the futures
price will be greater (less) than the forward price if the risk-free interest rate is stochastic
and is positively (negatively) correlated with the spot price.® However, for most com-
modities the difference in the two-prices is very small. In the Appendix, I estimate this
difference for each commodity, using the sample variances and covariance of the interest
rate and futures price, and I show that it is negllglble ' 1 therefore use the futures price,
Fr,, in place of the forward price in (1a).

Figures 1, 2, and 3 show spot prices for copper, lumber, and heating oil, together
with the one-month net marginal convenience yield, %, = ¢,,. (My data for copper and
lumber run from October 1972 through December 1987. Heating oil futures began trading
only in late 1978, so data for this commedity cover November 1978 to June 1988. The
data and construction of , are discussed in Section 4.) Observe that price and convenience
yield tend to move together. For example, there were three periods in which copper prices
rose sharply: 1973, 1979—1980, and the end of 1987. On each occasion (and especially
the first and third), the convenience yield also rose sharply. Likewise, when lumber prices

" This notion of marginal convenience yield was introduced by Working (1949). Williams (1987) shows
how convenience yield can arise from nonconstant processing costs. If storage is always positive, price is the
present value of the expected future flow of convenience yield. Pindyck {1993} tests this present-value model
of commodity pricing.

* Note that the expected future spot price, and thus the risk premium on a forward contract, depends
on the “beta” of the commeodity. But expected spot prices or risk premia do not appear in (la). Indeed, {la}
does not depend on the stochastic structure of price or on any medel of asset pricing.

*If the interest rate is nonstochastic, the present value of (he expected daily cash flows over the life
of the futures contract will equal the present value of the expected payment at termination of the forward
contract, so the futures and forward prices must be equal. If the interest rate is stochastic and positively
correlated with the price of the commodity (which we would expect 1o be the case for most industral com-
modities), daily payments from price increases will on average be more heavily discounted than payments from
price decreases, so the initial futures price must exceed the forward price. For a rigorous proof of this re-
sult, see Cox, Ingersoll, and Ross {1981).

** French (1983) compares the futres prices for silver and copper on the Comex with their forward prices
on the London Metals Exchange, and shows that the differences are very small (about .1% for three-month
contracts).
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COPPER: SPOT PRICE AND NET CONVENIENCE YIELD
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FIGURE 3
HEATING OIL: SPOT PRICE AND NET CONVENIENCE YIELD
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rose in early 1973, 1977-1979, 1983, and 1986—1987, the convenience yield also rose.
For heating oil the comovement is smaller (and much of what there is is seasonal), but
there has still been a tendency for price and convenience yield to move together.

These figures also show that firms are willing to hold inventories at substantial cost.
In December 1987, the net convenience yield for copper was about 10 cents per pound
per month—about 8% of the price. Thus firms were paying 8% per month—plus interest
and direct storage costs—to maintain stocks. (By 1988, the net convenience yield reached
40 cents per pound, which was nearly 30% of the price.) The net convenience yield for
lumber and heating oil also reached peaks of 8% to 10% of price. During these periods
of high prices and high convenience yields, inventory levels were below normal but still
substantial. This suggests that production is rigid in the short run and cannot be adjusted
guickly in response to higher prices. But it also suggests that an important role of inven-
tories is to avoid stockouts and facilitate the scheduling of production and sales. This role
probably dominates when prices are high and inventory levels are low.

Table 1 compares the variances of detrended production, sales, and inventories. The
first row shows the ratio of the variance of production to the variance of sales. For copper
and heating oil, the variance of production is much less than that of sales. One explanation
is that demand shocks tend to be larger and more frequent than cost shocks. One might
expect this to be the case for heating oil, where seasonal fluctuations in demand are con-
siderable, and to a lesser extent for lumber, The second row shows the ratios of the non-
seasonal components of the variances (obtained by first tegressing each variable against
a set of monthly dummies and time). As expected, this ratio is much larger for heating
oil and slightly larger for lumber, but for copper and heating oil the variance of sales still
exceeds that of production. However, as West (1986) and Kahn (1990, 1992) show, this
need not imply that inventories are used to smooth production. Also, Kahn (1990), using
a longer time series (1947-1987), finds the variances of production and sales to be ap-
proximately the same for copper.
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TABLE 1 Variance Ratios

Copper Lumber  Heating Oil

Var(y}/Var(Q) U101 976 380
Var{ y)*/Var(Q*) 680 1.011 744
(N/9¥Var(y)/Var(N) 191 3.187 .263
(N/3)"Var(y*)/Var(N*) 149 9.035 391
Var(y)/Var(y*) 1.287 1.333 1.530
Var(N)/Var(N*) 1.005 3.793 2.277
Correl(y, ) 728 964 198
Correl(y*, 0%) 698 962 399

Note: ¥y = production, @ = sales, N = inventory. A * in-
dicates that the variable is deseasonalized.

Table 1 also shows the ratio of the variance of production to that of inventories,
normalized by the squared means. For copper and heating oil, inventories vary much more
than production, whether or not the variables have been deseasonalized, suggesting that
inventories are used to smooth production. But for lumber, the variances of production
and sales are about the same, and production varies much more than inventories, especially
after deseasonalizing. Also, production and sales track each other very closely. This sug-
gests that production smoothing is not important for lumber, and instead inventories are
needed to facilitate scheduling and avoid stockouts.

Finally, what do the data tell us about the dependence of the marginal convenience
yield on the level of inventories? Marketing costs, and hence the marginal value of storage,
should be roughly proportional to the price of the commodity, and they should also depend
on anticipated sales. In the model presented in the next section, I use the following func-
tional form for ¢+, which is reasonably general but easy to estimate:

d}r = ﬁPr(Nr/Qr+l)_¢ - a. (2)

Ideally, 4, should be derived from a dynamic optimizing model of the firm in which there
are stockout costs and costs of scheduling and managing production and shipments, etc.,

but that is beyond the scope of this article. However, Brennan (1991) shows that a func-
tional form close to (2) can be derived from a simple transactions cost model.

Figures 4, 5, and 6 show ¢, plotted against the inventory-sales ratio, N,/Q,.,, for each
commodity. These figures suggest that i, is well described by (2), with 8, ¢ > 0, and
that the linear relationship used in most studies of inventories may be a poor approximation
of what is in fact a highly convex function. Also, note that if ¢, is a convex function of
N,, the spot price should be more volatile than the futures or forward prices, especially
when stocks are low. Fama and French (1988) show that this is indeed the case for several
metals.

Table 2 shows nonlinear least squares estimates of (2), with monthiy dummy variables
included for a. (These dummies capture seasonal shifts in both the cost of storage and in
the gross marginal convenience yield.) For all three commodities, the fit is good, and we
can easily reject ¢ = —1, i.e., that ¢ is linear in N. Also, the monthly dummy variables
are groupwise significant for every commodity. As expected, there are strong seasonal
flucteations in the net benefit from holding inventory.

3. The model

B Intertemporal optimization by producers balances three costs: the cost of producing,
which may vary with the level of output and over time as factor costs change; the cost of
changing production, i.e., adjustment cost; and the cost of drawing down inventories, i.e,
the increase in marketing costs less the savings in storage costs resulting from less in-
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FIGURE 4
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FIGURE &
HEATING OIL: NET CONVENIENCE YIELD VS. NQ
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ventory. My objective is to estimate all three of these costs and determine their dependence
on output, sales, and inventory levels. To do this, [ make use of the fact that in the U.S.
markets for copper, heating oil, and lumber, producers can be viewed as price takers.

This, together with the fact that futures prices provide a direct measure of the marginal
value of storage, allows me to estimate absolute costs rather than relative ones as in other

studies (e.g., Blanchard (1983), Miron and Zeldes (1988), and Ramey (1991)).

I model the direct cost of production as quadratic in output, I assume that there is a
quadratic cost of adjusting output, and I use (2) to represent the net savings in marketing
costs from a marginal unit of inventory. Direct production cost, marketing costs, and
storage costs are likely to fluctuate scasonally, so I introduce monthly dummy variables.

TABLE 2 Nonlinear Least Squares Estimates of Equation (2)
A $ Flay) b R? DW
Copper 0120 19050 2.79* 0.75 922 1.72
(.0021) (.1088)
Lumber .0934 3029 2.75*% 0.50 814 1.62
(.0073) (. 1540)
Heating oil 1107 8110 3.66* 0.54 .609 2.21
(.0223) (.2788)

Note: Asymptotic standard errors are in parentheses. F(a) is the F statistic for significance of monthly
dummy variables; a * indicates significance at the 5% level. p is the coefficient for AR(1) correction. See
Section 4 for a discussion of the spot price series.
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Allowing for unobservable shocks, total per-period cost can be written as

11

Cr = (CO + E Cij: + z ‘Yju)jl + Th))’: + (l/z)b)hz + (1/2)BI(AJ'r)2
Jj=1 =1

Ll
+ N, EQir, P) + (ap + X a;Dy + p)N,. (3)
=1

Here, the w;s are a set of factor prices: a wage index and a materials cost index for all

three commodities, and in addition the price of crude oil for heating oil. These w;s and

the error terms 7, and v, allow for both observable and unobservable cost shocks.
Inventories must satisfy the following accounting identity:

N:=Nr—l +yr_Qr' (4)

Taking price as given, firms choose production and sales levels to maximize the present
value of the flow of expected profils, subject to (4):

max Er z Rf,r(Pt+rQl+r - C.H—f), (5)

=0}
where R,, is the mperiod discount factor at time ¢. All prices and costs in this model are
in nominal terms, so R,, = 1/(1 + r.)), where r,, is the T-period nominal interest rate at
t. The maximization is subject to the additional constraint that N,,. = 0 for all 7, but
because ¢ — ® as N — 0, this constraint will never be binding.
To obtain first-order conditions, use (4) to eliminate y,, then maximize with respect
to @, and N,. First, maximize with respect to @,, holding N, and @,,, fixed. This vields

11 mn

Pr=g + Z Cijr + 2 YW + byr + BI(A)’: - RnE:A)’m) + 7. (6)
=1 j=1

Second, maximize with respect to N,, holding @, and future Ns and Qs fixed (so that
Ay, = AN, and Ay,., = —AN). Using &, = —BP(N,/0,,,)" %, we have

1 m
O0=co(l =R+ X D — R\Djup) + E:|: 2w — Ryw ) + by, — Ryyi)
i=1 i=1
11
+ BI(A)’.’ - 2RIJAyJ+I + RZJAyJ+2) + ap + 2 aijl - BPJ(NJ/Qr+])¢:l
=

+ m = RIzErTfH-I + V. (7)

Equation (6) equates price with full marginal cost, where the latter includes the effect
of producing an extra unit today on current and discounted expected future adjustment
costs. Perturbing an optimal production plan by increasing this period’s output by one unit
(holding N, fixed so that sales also increase by one unit, and keeping y,., and Q,., fixed)
increases the current cost of adjustment (by 8;Ay,), but it reduces the expected cost of
adjustment next period (by 8 E,Ay,.,). The equation also contains an error term, but note
that this is not an expectational error; it simply represents the unexplained part of marginal
cost.

Equation (7) describes the tradeoff between selling out of inventory versus producing,
holding @ fixed. To see this, move a; + ¥;a,D, — BP(N,/Q,.))"* to the left-hand side.
The equation then says that net marginal convenience yield (the savings in marketing cost
over the coming period from having another unit of inventory) must equal the expected
change in production cost (the increase this period minus the discounted decrease next
period) from producing one more unit now, rather than selling it from inventory and pro-
ducing it next period. This expected change in cost may be due to expected changes in
factor prices (R, Ew;,,, may differ from w,}, expected increases in cost due 1o convexity
of the cost function, and changes in expected adjustment costs. Again, the error terms in
(7) represent the unexplained parts of marginal production and marketing costs.
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Equation (7) includes marginal convenience yield, so estimation of that equation can
provide estimates of the parameters 8 and ¢ of the convenience yield function. Miren and
Zeldes and Ramey estimate the parameters of this function (which they constrain to be
linear) just this way. However, we can use the fact that net marginal convenience yicld,

g, = -0y — ay, — X,4,D, — v, can be inferred from futures prices. Using (la) with a
one-month futures price replacing the forward price gives the additional equation
RlaFl,r - Pl =ayt Zjaijl - BP-'Er(N.'/Qr+I)_¢ + v, (8)

The basic model therefore contains three equations: (6), (7), and (8). These are es-
timated as a system, subject to cross-equation parameter constraints. A number of issues
regarding data and estimation are discussed in the next section.

Unlike the models of Bresnahan and Suslow (1985} and Deaton and Larogue (1992),
in this model inventories are always positive, because , — o as N, — 0. This can be
viewed as an approximation of the model, but a reasonably good one. One might ask
whether stockouts in fact occur, even though we never observe zero inventories in the
data. For the homogeneous and clearly defined commodities studied here, extremely liquid
futures (and forward) markets make this unlikely. Any firm can easily buy or sell inventory
through these markets. If some firms find their inventories low relative to their delivery
commitments, they can (and in practice do) buy spot (bidding up the marginal convenience
yield in the process). Also, as Kahn (1992) points out, the use of inventory to avoid
stockouts is compatible with a very low probability of a stockout actually occurring (but
a very high cost if it does occur),

One possible problem with this model is that 1 have arbitrarily specified the net mar-
ginal convenience yield function, ,. Of course, this is also a problem with every earlier
study that includes a cost of storage. However, in this case, if the primary interest is to
estimate the parameters of the production cost function and the parameter 8, that measures
the cost of adjustment, we can use (8) to eliminate , altogether. Substituting the left-hand
side of (8) for the terms that represent ¢, in (7) gives the following alternative Euler
equation;

11 m
—R,F,+P,=ci(l —R,)+ EIC;(D_,': —R.D;, )+ E'I: EI YiAw, — erWj.r+1)
i= J=

+ b(y: - R11y1+l) + Bl(Ayl - 2R|:A)’a+1 + ReryHZ)] + L erErTfH-l- (73)

Note that this also eliminates inventories, &,, as a variable in the model. Estimation of
(6) and (7a) will yield values for 8,, b, and the other parameters describing production
cost that are unaffected by possible errors in the specification of ¢, or the measurement
of N,

4. Estimation method and data

® This section discusses the method of estimating the two versions of the model (equa-
tions (6), (7), and (8) and equations (6) and (7a)) and the dataset.

O Estimation. A natural estimator for a Euler equation model is an instrumental vari-
ables procedure that minimizes the correlation between variables known at time ¢ and the
equation residuals. Hence 1 simultaneously estimate equations (6), (7), and (8) using Hansen’s
(1982) generalized method of moments (GMM) procedure.

The choice of instruments for this procedure deserves some comment. Recall that the
error terms 7, and v, represent unobserved shocks to production, marketing, and storage
costs. When estimating the model, actual values for variables at time ¢ + 1 and r + 2 are
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used in place of expectations, which introduces expectational errors. For example, (6)
becomes

Po=c + E YW, t+ by, + B,(Ay, — R, Ay.) + Tt €. (9)
=1

Similarly, (7) will have ajcomposite errorterm n, — Ry + v, + €4 + 6,4, As with
most Euler equation models, the expectational errors are needed for identification. Without
them, the full model, i.e., (6), (7), and (8), would be underidentified.

Under rational expectations, the errors €, ., and €, {and the corresponding errors
for (8)) are by definition uncorrelated with any variable known at time . However, this
need not be the case for n,, 1., and »,, which may be correlated with endogenous vari-
ables. Also, errors may be serially correlated. Hence, 1 use as instruments only variables
that can reasonably be viewed as exogenous. The instrument list includes the set of sea-
sonal dummy variables and the following variables unlagged and lagged once: M1, the
Index of Industrial Production, housing starts, the rate of inflation of the producer price
index (PPI), the rate of growth of the Standard and Poors 500 Common Stock Index, the
rate of growth of labor hours, the three-month Treasury bill rate, and the weighted ex-
change value of the doilar against other G-10 currencies. For copper and lumber, 1 also
include the price of crude oil. This gives a total of 30 instruments for copper and lumber,
and 28 for heating oil.

As Hansen and Singleton (1982) show, the minimized value of the objective function
times the number of observations provides a statistic, J/, which is distributed as y* with
degrees of freedom equal to the number of instruments times the number of equations
minus the number of parameters. This statistic is used to test the model’s overidentifying
restrictions, and hence the hypothesis that agents are optimizing with rational expectations.

O Data. The model is estimated using monthly data covering the period November 1972
through December 1987 for copper and lumber, and November 1978 through June 1988
for heating oil. Leads and lags in the equations reduce the actual time bounds by two
months at the beginning and end of each period.

Production and inventory levels for each commodity are measured as follows. For
coppet, y, is U.S. production of refined copper over the month, regardless of origin (ore
or recycled scrap), and N, is end-of-month stocks of refined copper at refineries and in
Comex warehouses, both measured in short tons."' For lumber, y, is monthly production
and N, is end-of-month inventories of softwood lumber. Units are millions of board feet. "2
For heating oil, y, is monthly production and N, is end-of-month inventories of distillate
(no. 2) fuel oil. Units are millions of barrels. "

Unit sales for each commodity is calculated from unit production and end-of-month
inventories using (4). The resulting series were compared to data from the same sources
that are purportedly a direct measure of unit sales. The series were mostly identical, but
occasionally data points will differ by up to 1%.

The production cost model includes variables that account for observable cost shocks.
For all three commodities, I use average hourly nonagricultural earnings (w,,), along with
the PPI for intermediate materials, supplies, and components (w,,}. For heating oil, I in-
clude as an additional cost variable the PPI for crude petroleum (w;,).

Some issues arise with respect to the choice of discount factor and the measurement
of spot price, which T discuss in turn. Some studies have used a constant (real) discount

" Source: Metal Statistics (American Metal Market), various years. Note that only finished product stocks
are included. Excluded are “in process™ stocks, such as stocks of ore at mines and smelters, and stocks of
unrefined copper at smelters and refineries.

? Source: National Forest Products Association, Fingertip Facts and Figures. Most lumber consumed
in the United States is softwood (pine and fir). Futures contracts are traded on the Chicago Mercantile Ex-
change.

" Source: U.S. Deparment of Energy, Monthly Energy Review, various issues.
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factor, but in commodity markets, changes in nominal interest rates can have important
effects on inventory holdings and price. Hence it is important to let the discount factor
vary across time.

The choice of R,, should reflect the rate used to discount nominal cash flows at time
t. For (8), which is an arbitrage relationship, this should clearly be the risk-free rate, e.g.,
the nominal Treasury bill rate. For (6) and (7), however, the rate should include a premium
reflecting the systematic risk associated with production cost. Unfortunately, this risk is
likely to vary across the components of cost (in the context of the Capital Asset Pricing
Model, it depends on the beta of the commodity as well as the betas of the individual
factor inputs), so there is no simple premium that can be easily measured. (The use of an
average cost of capital for firms in the industry is also incormrect; we want a beta for a
project that produces a marginal unit of the commodity, not a beta for the equity or debt
of the firm.) I therefore ignore systematic risk and use the nominal Treasury bill rate,
measured at the end of each month, to calculate R\, and R,,.

The measurement of the spot price requires a choice among three alternative ap-
proaches. First, one can use data on cash prices, purportedly reflecting actual transactions
over the month. One problem with this is that it results in an average price over the month,
as opposed to an end-of-month price. (The futures prices and inventory levels apply to
the end of the month.) A second and more serious problem is that a cash price can include
discounts and premiums that result from longstanding relationships between buyers and
sellers, and hence it is not directly comparable to a futures price when calculating con-
venience yields.

A second approach is to use the price on the spot futures contract, i.e., the contract
expiring in month ¢. This also has problems. First, the spot contract sometimes expires
before the end of the month. Second, open interest in the spot contract (the number of
contracts outstanding) falls sharply as expiration approaches and longs and shorts close
out their positions, so by the end of the month there may be few spot transactions. Finally,
for many commodities, active contracts do not exist for each month.

The third approach, which I use here, is to infer a spot price from the nearest active

futures contract (i.e., the active contract next to expire, typically a month or two ahead),
and the next-to-nearest active contract. This is done by extrapolating the spread between

these contracts backwards to the spot month as follows:
P, = F\(F\ /Fp)" ™2, (10)

where P, is the end-of-month spot price, F; and F;, are the end-of-month prices on the
nearest and next-to-nearest futures contracts, and ng, and n,, are, respectively, the number
of days between ¢ and the expiration of the nearest contract, and between the nearest and
next-to-nearest contract. Equation (10) is used to construct a series for P,. Finally, the
commodity term structure is also used to infer the 30-day net marginal convenience yield
by replacing F,, on the left-hand side of (8) with P(F,/P)*/™".

The advantage of this approach is that it provides spot prices for every month of the
year. The disadvantage is that errors can arise if the term structure of spreads is nonlinear.
To check that such errors are small, [ compared these prices to actual spot contract prices

for copper (available for 200 of my original 224 observations) and for lumber (available
for 114 observations), and found the series to be very close.'* (No spot contract prices

were available for heating oil.) Finally, I constructed new price series for copper and
lumber using the spot contract price when available and the imputed price otherwise, and
used them to reestimate the model. The results were very close to those reported below.

" The root-mean-square and mean percent errors for the two series are, respectively, 1.21% and —.12%
for copper and 3.99% and .39% for lumber. The simple correlations are .998 for copper and .983 for lum-
ber.
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TABLE 3 Estimation of Equations (6), (7), and (8)
Parameter Copper Lumber Heating Oil

» -.3043 —1.741 7406
(.0650) (.6273) (.4182)

V2 —-.5916 —16.953 4.108
{.6165) (7.878) (2.441)

¥ -.0113
(.0531)

b =.0000021 —.00038 1551
(.0000028) (.0027) (.0343)

B =.0000011 —.00004 —-.0689
(.0000012) (.00093) (.0124)

B 0133 .2378 0854
(.0011) (.0407) (.0096)

¢ 7551 3.092 1.420
(.0710) (.5230) (.1555)

a, .3795 7.510 8913
(.0588) (.9113) (.4526)

a, 0916 2.107 0513
0427y (.5476) (.2645)

oy 0134 .9106 1.796
(.0361) (.5252) {.2569)

a .0348 4467 1.552
(.0391) (.655T) (.3633)

ty —.0266 —.0220 2.309
(.0450) (.6037) (.3123)

s —.0506 —1.585 1.620
(.0343) (.5807) (.2998)

dy —. 1186 —-.4772 1.750
(.0500) (.7055) (.2922)

y —.0400 T ~1.726 1.991
(.0594) (.7782) (.3052)

a, .0740 .8569 1.985
(.0435) (.6483) (.2737)

aq 1150 —-1.107 2.045
(.0394) (.6580) (.3258)

dip .0642 —.8144 1.299
(.0359) (.6183) (.2957)

ay —.0622 —.3134 1.075
(.0396) (.5459) (.2917)

Co 100.494 515.926 —152.506
(9.953) (165.070) (104.839)

<) 2.528 —1.325 —3.428
(1.005) {2.985) (1.307)

c; 3.598 ~4.837 —-4.473
(1.515) ‘ (3.722) (1.873)

cy 2.655 —11.275 —1.185
(1.586) (4.338) (2.150)

C, _ —1.501 -6.183 ~2.240

(1.724) (4.772) (2.438)
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TABLE 3 Continued
Parameter Copper Lumber Heating Oil
Cs —2.353 -10.283 -2.714
(1.708) (5.046) (2.475)
Cq -1.008 -10.173 —4.188
(1.711) (4.941) (2.499)
€ —3.138 —7.784 —1.781
{1.732) (4.602) (2.222)
€y —4.890 —18.421 2928
(1.766) 4.617) (2.221})
I —4.762 —16.350 9881
{1.682) (4.257) (2.167)
i —-2.874 —-6.732 3.489
(1.473) (3.590) (2.077)
i —2.324 —8.223 176l
(131D (2.816) (1.819)
il 9443 .9886 9962
(.0309) (.0095) (.0035)}
D2 9895 9550 8962
(.0152) (.0263) (.0502)
J 77.43 93.38* 60.38

Note: p, and p, are AR(1) coefficients for (6) and (7). J is the minimized value of the objective function
times the number of observations, distributed as x* (59} for copper and lumber and y* (52) for heating oil. A
* indicates significance at the 5% level. Asympiotic heteroskedastic-consistent standard errors are in parenthe-
ses.

5. Results

B Tables 3 and 4 show, respectively, the results of estimating equations (6), (7), and
(8) and equations {6} and (7a) for each commodity. Each model was first estimated without
any correction for serial correlation, but the residuals of (6), (7) and (7a) appeared to be
AR(1). These equations were therefore quasi-differenced, and each model was reesti-
mated.

For lumber, the fit of the model is poor, at least as gauged by the J statistics, which
test the overidentifying restrictions. The values for J reject these restrictions at the 5%
level for both versions of the model. These rejections may indicate that producers of lum-
ber do not optimize {at least on a month-to-month basis) with rational expectations, or
that there is a failure in the model’s specification. The overidentifying restrictions are not
rejected, however, for copper and heating oil.

As for the estimates themselves, several points stand out. First, none of the com-

modities exhibit statistically significant costs of adjusting production. For both the full
model and for equations (6) and (7a), B, is either insignificantly different from zero (for
heating oil) or negative. Also, for copper and lumber, both versions of the model yield
estimates for b, the slope of the marginal cost curve, that are insignificantly different from
zero. It is hard to reconcile this with a production-smoothing role for inventories (even
during periods when inventories are large). The results for heating oil, however, do pro-
vide evidence of rising marginal costs, and the estimates are economically meaningful.
For example, by/P = .15, so this component of cost accounts on average for some 15%
of the price of heating oil. Over the sample period, temporary increases in output added
3 to 6 cents to marginal cost because of the convexity of the cost function. This result,
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TABLE 4

Estimation of Equations (6) and (7a)
Parameter Copper Lumber Heating Gil

% —.3534 .0882 1.551
(.0807) (.8668) (.6878)

v —.8654 -2.237 5809
(.4455) (6.100) (2.955)

Y ' —.0484
(.0854)

b 0000018 —.0057 ,2357
{.0000024) (.0023) (.0621)

B —.000000052 0019 —.1048
(.00000083) (.00069) (.0208)

o 107.779 1373.62 —169.038
(14.530) (295.529) (116.862)

e 1.918 2.691 -2.957
(.9647) (2.913) (1.2006)

2 5.114 -.9123 -5.860
(1.588) (3.475) (1.709)

< 4,294 -1.341 —2.835
(1.698) (4.027) (2.030)

Cs 1.303 -2.410 -1.111
(1.713) (4.446) (2.466)

Cs 6371 ~7.935 —-2.472
(1.829) {4.682) (2.552)

Cs 1.415 -11.697 —4.581
(1.857) 4.610) (2.400)

¢ —.0618 —13.308 -1.716
(1.847) (4.649) (2.378)

Gy —1.038 -22.296 1.501
(1.769) {4.342) (2.424)

Py ~1.685 -20.210 2.689
(1.495) (4.020) (2.350)

Clo -1.617 —11.744 5.224
(1.254) (3.476) (2.206)

on -1.816 —~8.023 2.527
{.9689) (2.956) (1.766)

o 9694 1.000 .989%
(.0299) (.00082) (.0109)

N 9757 9878 8444
(.0203) (.0155) (.0813)

J 43.32 65.26* 34.99

Note: p, and p, are AR(1}) coefficients for (6) and (7a). J is the minimized value of the objective function
times the number of observations, distributed as ¥*(43) for copper and lumber and y*(38) for heating oil. A *
indicates significance at the 5% level. Asymptotic heteroskedastic-consistent standard errors are in parentheses.

together with the numbers in Table 1, suggests that one role of heating oil inventories is
to smooth production.

Second, the factor cost variables w;, do little to explain price, and some of the ;s are
negative. Of course these are partial correlations, but in the case of copper, even the simple
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correlations between the spot price and the two factor cost indices are negative (—.04 and
—.07). These indices may simply be too aggregated to capture costs in these industries.

Third, for all three commodities, the estimated marginal convenience yield function
is strongly convex—the cost of drawing down inventories rises rapidly as levels fall. Thus
while production smoothing may be a role of inventories (at least for heating oil), that
role is limited to periods when inventories are at normal-to-high levels. The use of in-
ventories to smooth prices is likewise limited. As Figures 1, 2, and 3 show, sharp price
increases are usually accompanied by sharp increases in convenience yield.

These estimates of 8 and ¢ are a rejection of the quadratic inventory model (and the
lincar marginal convenience yield it implies) that is central to most studies of manufac-
turing inventories. While the role of inventories may be different for manufacturing than
for commodities, these results at least throw into question the validity of this standard

assumption.

I also estimated several alternative versions of the model. First, one might argue that
the value of inventory depends not only on expected sales, but also on the next-period
expected price (rather than the current price). I reestimated the model substituting P, for
P, in the expression for , in (7) and (8). The results were nearly the same as for the
original model.

Second, equations (6), (7), and (8) and equations {6) and (7a) were estimated using
quarterly data, on the grounds that intertemporal optimization may be feasible only over
time horizons longer than one month. The results were not very different. Third, cubic
terms were added to the production cost function, on the grounds that there may be non-
linearities in marginal cost. However, those terms were uniformly insignificant and left
the J statistics almost unchanged. Finally, a risk premium parameter was added to the
discount factor in equations (6}, (7), and (7a), but estimates of this parameter were in-
significant and/or quantitatively unimportant.

6. Conclusions

®  Unlike models of manufacturing inventories, this article has stressed the convex nature
of the marginal convenience yield function and used futures market data to infer values
for this variable. But this also means estimating Euler equations, with the difficulties that
this necessarily entails. The greatest difficulty is that estimation of structural parameters
hinges on capturing intertemporal optimization by producers over periods corresponding
to the frequency of the data—one month in this case. This may be too much to expect
from the data, and it may explain the rejection of the overidentifying restrictions for lumber
as well as the failure to find any evidence of adjustment costs or, for copper and lumber,
increasing marginal costs.

Of course there may also be problems with the specification of the model. A sym-
metric, convex adjustment cost function ignores important irreversibilities in production.
Copper is a good example of this. There are sunk costs of building mines, smelters, and
refineries, and sunk costs of temporarily shutting down an operation or restarting it. Such
costs can induce firms to maintain output in the face of large fluctuations in price or sales.
Then it is the size of a price change, rather than the amount of time that elapses, that is
the key determinant of the change in output.

These caveats aside, the results suggest a production-smoothing role for invento-
ries only in the case of heating oil. And even for this commodity, it is probably not the
primary role of inventories during periods of temporarily high prices. The very high net
marginal convenience yiclds that are observed at such times, and the convex conve-
nience vield functions that are estimated for all three commodities, are evidence that the
more important role for inventories is to reduce marketing costs by facilitating produc-
tion and delivery schedules and avoiding stockouts. The importance of this role is clear
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from the fact that producers keep inventories on hand at an effective cost that is some-
times very high.

Appendix

®  The futures price/forward price bias. This appendix shows that the futures price can be used as a proxy
for the forward price in (1a) with negligible measurement error. Ignoring systematic risk, the difference be-
tween the futures price, F,,, and the forward price, f,, is

Fro—fra=~ f Fr?u‘COVl(dFr.w/Fr.w)a(dBr,u-/Br.w)]dW- (A1)

where B, is the value at time w of a discount bond that pays $1 at T, and cov| | is the local covariance
at time w between percentage changes in F and B. (See Cox, Ingersoll, and Ross (1981) and French (1983).)
Let r, be the yietd to maturity of the bond. Then approximating dB/B by rdt — (T — w)dr and Fr, by its
mean value over (w, T), the average percentage bias, (F — f)/F, for a one-month contract is roughly

% bias = FcOv(Ar/r, AF/F)], (A2)

where 7 is the mean monthly bond yield and clv is the sample covariance.

Using the three-month Treasury bill rate for r and the nearest active contract price for F, [ obtain the
following estimates for this bias: copper, .0030%; lumber, —.0032%; and heating oil, .0077%. The largest
bias is for heating oil, but even this represents less than a hundredth of a cent for a one-month contract.
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